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ABSTRACT

We have come full circle back to the topic of visualization and the role of the mind's eye and of external

visual displays in human thinking. I have tried tn survey some of the main tools and processes that seem

to be implicated in everyday reasoning -- the kind that carries us through the day, dealing with problems

as they arise.

The thinking I have described does not look at all like formal logic, and only a little like mathematics. It

makes use of a great multitude of inference rules, which are not tautological rules of logic but incorporate

much real-world knowledge. It appears to be remarkably unconcerned with questions of sufficiency and

necessity. When it deals with quantities, as it often must, it usually handles primarily their ordinal rather

than their cardinal properties. For most people, at least, it makes great use of diagrammatic
representations, or mental diagrams in the mind's eye, which provide it with pwoerful Inference

processes. To compensate for its severe limitations in handling simultaneous relations, it proceeds by

successive approximations, and halts when it has satisficed.

By the standards of formal logic, it is a jerry-built structure. But it gets us through the day.
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Qualitative Reasoning:
How we Think our Way Through the Day

Herbert A. Simon

Carnegie-Mellon University

The term "reasoning" has been co-opted by logicians, experimental psychologists, and

perhaps others to refer almost exclusively to deductive and inductive inference. In my remarks

here, I intend to use the term much more broadly -- essentially as coextensive with thinking. It

may be true, but it is certainly not obvious, that all thinking is reasoning in the logician's strict

sense. For example, we ordinarily regard the use of analogy and metaphor as thinking, but these

processes do not fit very comfortably the logicians' paradigms for reasoning.

Reasoning by "Seeing"

Consider an example even more remote from logic. I ask you to visualize a rectangle in

the vertical plane that is twice as wide as it is high. I now ask you to drop a vertical line from the

midpoint of the upper edge to the midpoint of the lower edge. Next I ask you to draw a diagonal

from the northwest corner of the rectangle to the southeast corner. Does this diagonal intersect

the vertical line you drew previously?

Almost everyone will agree that it does - in fact, will be very sure that it does. But how do

you know? Did you prove it, using the axioms of Euclidean geometry or an algebraic calculation

based on analytic geometry? Probably not. You most likely just saw it.

I am going to define reasoning broadly enough to encompass inferences like the one we

have just made. We represent information in various ways -- in this case, in the form of a mental

picture.1 We have available certain processes, or operators - some of them conscious, some not

-- for operating on this information and drawing conclusions from it. In the case at hand, the

subconscious operator we applied is one we call "seeing." It is available for extracting

information both from external visible displays and from pictures in the "mind's eye."

Inferring something because you can see it in your mind's eye, or even on a piece of paper,

is not always a reliable process. In either case, there are severe limits on the resolution of the

picture and the accuracy of the information-extracting processes. Consider the following

example. We draw a square with one inch sides. Around the northwest corner of the square as

1 By "mental picture" I mean whatevr representation -' the rectangle in your had permitted y'-u to imer that the
diagonal and vertical lines intersected.
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center, we draw a circle with radius equal to the side of the square. Around the southeast corner

we draw a second circle with radius the length of half the side.

Do the two circles intersect? Can you see the intersection, or the lack of one? How certain

are you of your answer? A fairly simple calculation, which I leave to you, will convince you that

the two circles do indeed intersect. But if the calculation convinces you, remember that it is a

calculation and not a *seeing.' What are the limits of what you or I can see in a simple geometric

figure?

Formal Reasoning

A more or less justified claim that is often made for reasoning that employs the strict rules

of formal logic is that it is perfectly reliable. A modern system of formal logic provides you with a

small set of axioms and an even smaller set of processes (inference rules) for deriving new

expressions from the axioms. In Pincipia Mathernatica, for example, there are about a half

dozen axioms and only two inference rules, modus ponens and substitution. Every derivation

consists of a sequence of easily checked steps, for the terminal expression in each step must be

derivable, applying one of the two rules of inference, from axioms or theorems previously derived.

In spite of the reliability that should be obtainable in this way, logic suffers from grave

problems that begin at the very foundations. First, there are the G6del theorems, which

guarantee, for an even moderately rich logic, that if the logic is consistent (and who would want

an inconsistent logic?) it is incomplete: there are true statements expressible in the language of

the logic that are not provable. Moreover, as such distinguished logicians as Frege, Russell, and

Quine have at one time or another discovered, a contradiction may actually be lurking in even the

most carefully crafted logic.

But logic suffers from even graver difficulties than the possible presence of contradictions

and the certain presence of incompleteness. Just because it restricts itself to a small number of

inference rules, it proceeds by tiny steps, hence takes almost forever to get anywhere. Almost no

serious mathematics is done using the strict rules of the game of mathematical logic.

Working mathematicians use seven-league boots to take giant steps from already proved

-expressions to new consequences. They do so with a certain measure of confidence that anyone

skilled in the art, given time and patience, can fill in the numerous missing intermediate steps.

Often they are wrong (witness the recent failed claim of a proof for Fermat's Last Theorem), and

have to patch up their proofs by restricting the claims of their theorems or in other ways. If they

2
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are good mathematicians, and not too adventuresome, their proofs are right more often than not,

but there is n thing like absolute certainty in them.

Heuristic Reasoning
It would appear, then, that mathematicians reason just like other people. They are not a

separate subspecies of the human race. They acquire, in the course of their training and

experience, a rich set of inference operators that allow them, with a certain degree of assurance,

to proceed from a description of some state of affairs to inferences about it that are implied but

not explic !tly stated in the description. Their inference processes provide a certain level of

reliability in their reasoning, but not certainty. In return for taking the risk of being mistaken,

mathematiciaans are rewarded by being able to reason far more powerfully and rapidly than if

they stuck to the strict ruIes of the game of logic. They can do serious mathematics, and are not

restricted to trivial mathematics.

The prudent among them, and among those of us who are not mathematicians, often divide

the reasoning process into two parts, a discovery part and a verification part. First, we rely on

quite powerful but somewhat unreliable inference operators, so-called heuristic processes, to

discover new conclusions. Then, before we announce our new truths or act on- them, we subject

them to careful scrutiny, using more microscopic and reliable inference rules to test the doubtful

steps. In the common practice of reasoning, discovery and verification are intermingled, for we

may alternate between them during the whole course of our thinking.

If absolute reliability is not essential, we can employ even more powerful, but less reliable,

heuristic rules, and be quite relaxed about verification. We may be obliged to do so when we

have to act in real time -- need we verify in a strictly logical way that the automobile is about to

run over us? Or we may prefer to use unreliable but powerful procedures if mistakes can be

repaired, are not irrevocable. Then we leave verification to Nature, who will ultimately tell us if we

were in error.

The conclusion we have reached is that human reasoning cannot be identified with the

processes prescribed in books on formal logic. It is much less preoccupied with absolute

reliability than logic is, and much concerned with the availability of inference operators that are

powerful, if sometimes fallible.

3
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Thinking Is not Tautological

One characteristic of logic I have not focused upon is that formal logic is generally

supposed to be tautological. That is to say, the conclusions of an argument in formal logic should

not place any restriction on the range of possible worlds that are not imposed by the axioms. If

the premises admit unicorns, then the conclusions must not exclude them.

It is because of this tautological or analytic character of the inference rules of a proper logic

that we have confidence in the conclusion of a chain of reasonings without feeling the need of

checking it by empirical observation or experiment. If we do make empirical tests of it and the

tests fail, we do not blame the inference rules but the axioms.

"All men are mortal. Socrates is a man. Therefore, Socrates is mortal.' We do not

question the structure of the syllogism. If we find that Socrates is still alive today, we conclude

either that his death will occur at some future date or that the major or minor premises of the

syllogism are in error. The rule of modus ponens is irreproachably analytic, and cannot be

invalidated by empirical evidence.

But do we follow this principle in our everyday reasoning? A weight is hanging from one

end of a rope thrown over a pulley, and a second weight from the other end of the rope. Both

weights are stationary, and the pulley looks quite new and not rusted. We notice that the weight

attached to the left end of the rope is ten kilograms, and conclude that the weight attached to the

right end is also ten kilograms.

Perhaps we reasoned to this conclusion using only analytic inference rules. Perhaps all of

our knowledge of the laws of physics was stored in axioms. It would be an interesting exercise to

construct a proof along these lines, using only modus ponens and substitution as rules of

inference. But I cannot wait until you have finished it. What is the alternative?

The alternative is to include laws of physics, not just among the axioms, but among the

inference rules as well. We can write the rules in the form of productions, C --->A, which read

"Whenever the conditions C are satisfied, execute the actions A." In the case before us, the

production might (roughly) take the form: "If you see a weight hanging from the rope on one side

of a pulley wheel, and another weight on the other side, and if the pulley is frictionless, and if the

weights are motionless, and if the weight on one side has a known value ---> assign the same

value to the weight on the other side."

Of course you pay a price for this law of inference. It will lead you to correct conclusions

4
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only in a world governed by Newton's Laws of Motion (and only in a world where you can detect

reliably whether a pulley is frictionless). If the conclusion, subjected to other tests, turns out to be

false, it may be your inference rule that is at fault, and not your other assumptions.

Note that in proceeding in this way, we are doing more than just assuming Newton's Laws

of Motion, or even embodying them in inference rules. We are giving ourselves powerful means

of making inferences that would otherwise be very difficult to make. Suppose, for example, that

the pulley problem is presented to us as a diagram in a physics book, or that it is presented in

words, but we form our own mental diagram. Then if we happen to have acquired a production

correspondirg to Newton's Third Law, we will be able to reason about the pulley.

What does it mean "to have acquired a production"? It means that when a pulley presents

itself satisfying the conditions of the production, we will notice it and that the conditions are

satisfied, the corresponding actions will be evoked from our memory, and we will take the action

-- in this case, reach a conclusion about the unknown weight.

Inference Chains

Our experiences in geometry or logic or in mathematics generally may lead us to think of

reasoning as a process of constructing long chains of steps that lead from premises to

conclusion. In everyday life, reasoning is seldom quite like that. In any specific situation within a

given task, only a few productions are likely to be evoked at any moment.

Human attention at any given time focuses on only a very restricted set of stimulus

features, visible or audible in the external environment, or recovered from memory and held

temporarily in short-term memory. It is this limited set of stimuli, noticed and held in attention,

that must supply the cues that evoke productions -- the conditions that must be satisfied. The

evokable productions may be further restricted to those that are relevant to the goal at hand, for

one of the conditions a production may depend on is a goal symbol held in short-term memory.

In the absence of that symbol, the production's conditions will not be satisfied and the production

will not be evoked.

For example, consider the productions used by someone with the requisite skills to solve a

simple equation in algebra. Memory holds the goal of solving the equation. If a constant term is

noticed to the left of the equals sign, a production is evoked that substracts the term from both

sides of the equation. If a term in the variable is noticed to the right of the equals sign, a second

production is evoked that substracts that term from both sides of the equation. If the variable

5
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term on the left of the equals sign has a coefficient other than unity, a third production divides all

terms in the equation by that coefficient.

Other than collecting terms, that's all there is to solving such an equation. What is required

is that the three productions described above be available, that they be evoked by the cues on

the paper and in memory, and that they not be interfered with by a lot of other irrelevant

productions evoked at the same time. The latter obstruction is prevented by the narrow span of

attention and the presence of appropriate goal symbols among the conditions of the productions.

It should be noted especially that the action of each production creates a new situation that

makes the action of the next production appropriate and at the same time evokes it. The chaining

is accomplished by the continually changing problem situation that evokes the right chain of

productions. The productions do not have to be strung together in memory. The situation evokes

them at the proper time.

The scheme I have just described provides the backbone for most of those reasoning

systems that we call "expert systems." A medical diagnostic system, for example, responds to

symptoms by hypothesizing disease entities. The presence of such hypotheses evokes other

productions that propose additional tests to discriminate among alternatives. After a diagnosis

has been accepted, yet other productions will supply a Latin name for the disease entity, will

make a prognosis, will propose treatment, and so on. The result may be "logical" enough, but

there is little about the process that suggests the long chains of steps that characterize formal

logical inference. At each successive moment, the system simply does "what the situation calls

for," or even more accurately, 'what it is reminded of by the situation."

Each production can, of course, be formally regarded as an inference rule. If we tried to

state just what the inference is, we would have to say something like, "The situation satisfying

conditions C implies that it would be a good idea to take the actions A." In the pulley example, it

being known (and noticed) that the force on the left end of the rope over the pulley is F, it is a

good idea to assign the force F to the right end of the rope as well. The implication is a very

conditional one, requiring both that our goal is to find the forces In the pulley system and that the

system is governed by Newton's Laws. If either condition is not satisfied, the production is

inappropriate, and we would hope that it would not be evoked.

A crucial difference between the productions and usual rules of inference is that the former

are mandatory (they are to be executed whenever their conditions are satisfied), while the latter

6
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are permissive (they may be executed at any time, but it is nowhere specified under what

circumstances they should be executed).

Necessity and Sufficiency

In formal logic and mathematics we pay a great deal of attention to whether our premises

are necessary and/or sufficient for our conclusions. Insufficiency is, of course, the mortal sin,

since it means that our conclusions need not hold under all conditions. Lack of necessity is only

a venal sin, an unesthetic redundancy that makes us fall short of the greatest generality we could

achieve.

In everyday reasoning, we may be moderately concerned with sufficiency, but seldom with

necessity. And even in the matter of sufficiency, we are usually very pragmatic. Gerhard Fischer

has provided the following example, which comes from a Designer's-Assistant system that helps

architects design kitchens. The system examines a design in which the architect has not placed

the kitchen sink at a window, and reritiques it, reporting to the architecture that the placement is

undesirable. When the architect asks why, it replies: "The water pipes are usually installed with

the expectation that the sink will be at the window, and are more accessible there. More

important, the housewife spends a good deal of time at the sink, and finds it pleasanter to have a

view from a window.'

Now these are only two considerations out of many that must go into a kitchen design. In

particular, they do not take into consideration the conflicting requirements that may be imposed

on other fixtures and the problem of tradeoffs among them. Yet, they serve as "reasons" for

placing the sink in a particular place, and it is precisely fragmentary reasons of this kind that we

use in everyday life to justify most of our actions. We tend to accumulate reasons, no subset of

which is wholly necessary, but we neglect many interactions, so that our reasons are almost

never sufficient.

A principal reason why such an unrigorous procedure is satisfactory is that we take our

actions in constant interaction with the environment. We take a step, notice new conditions and

constraints that our reasoning ignored, and adjust our next step accordingly. In designing, we

enter our tentative design decisions on a drawing, and the drawing reveals interactions that were

ignored in our premises. If these interactions are important, we convert them into new constraints

(new reasons), and modify the design to take account of them.

We human beings, except when using the forma: idois of algebra (preferably with the help

7
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of a large computer) are not at all good in handling simultaneous equations. We solve them by

successive adproximations, finding an answer that seems to fit a small subset of the equations,

then modifying it to fit others. One of the skills the professional designer acquires in any domain

is knowledge of which constraints to satisfy first so that the plan can be carried to completion with

a minimum of revision.

Qualitative Reasoning

Let these comments suffice, for the moment, to characterize reasoning in general so that

we can now turn to qualitwive reasoning. Roughly speaking, reasoning is qualitative when it

leads to conclusions that do not specify "how much." Driving an auto employs a production that

can be paraphrased: "If you press down on the acceleator, the car will go faster.'

Leaving aside various picky details, such as why we speak of the accelerator as

determining velocity and not acceleration, what can we do with such a vague inference? What

we can do with it is to regulate the speed of our car to any desired accuracy, pressing on the

pedal if it is going too slowly for us, easing up if it is going too fast. We need no numbers, just a

calculus of more and less and equals, an ordinal calculus.

In the field of artificial intelligence, there has been a rash of proposals during the past

decade for schemes capable of doing qualitative, ordinal reasoning about complex systems. A

formal theory providing solid foundations for such schemes has, in fact, existed for nearly fifty

years, having been developed by the economists Griffith Evans and Paul Samuelson for use in

economic reasoning, In somewhat less explicit form, it was used even earlier in such domains of

physics as mechanics and thermodynamics. In particular, it supported a form of analysis often

called "comparative statics.'

A great deal of everyday thinking takes the form of qualitative reasoning. It is the

exception, rather than the rule, that we reason in terms of numbers or exact quantities of any

kind. Even when we wish a numerical answer, we may first sketch out our analysis in qualitative

terms, or check a quantitative result qualitatively to see whether it "makes sense.*

I should like to show, primarily by means of examples, how qualitative reasoning works, to

demonstrate its robustness when the variables are subiacted to arbitrary monotonic

transformations, to relate it to simple principles of the calculus and simple results in differential

equations, and finally, to relate it to reasoning about diagrams and their corresponding mental

pictures.

8
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Comparative Statics

A great many reasoning problems have the following gencra! form: A system is in

equilibrium, or in some sort of steady state. The exact position of equilibrium depends upon

some system parameters, which we may regard as exogenous variables whose values are

determined by mechanisms independent of the system itself. The value of one or more system

parameters is changed -- is increased, say -- and after the distrubance the system settles into a

new equilibrium. We wish to infer how various system variables will change from the original

equilibrium to the new equilibrium, whether they will increase or decrease or remain constant.

Often questions like this can be answered even if we do not know the numerical values of

the variables in the system or the parameters, but only their signs, that is, in purely qualitative

terms. Consider a simple example from classical price theory in economics. The quantity of a

good that suppliers will offer varies with the price, larger quantities being offered at higher prices.

The quantity of the same good that buyers will purchase also varies with the price, smaller

quantities being purchased at higher prices. There is a price, the equilibrium price, at which the

quantity supplied equals the quantity demanded.

Now suppose that a tax is levied on the good. The cost of producing it will be increased by

a corresponding amount, and the price at which any specified quantity of the good will be offered

by the suppliers will be increased by the same amount. (If we draw a graph with price as the

vertical axis, the entire supply curve -- the schedule showing the prices at which different

quantities will be offered -- will be displaced upward by the tax.) The amounts that buyers will

purchase at any given price will remain unchanged.

Presented with these assumptions, it is not too difficult to conclude that the new equilibrium

price (the price at which the quantity offered will equal the quantity demanded) will be higher than

the previous price, and that the quantity exchanged at the new price will be smaller than the

quantity in the previous equilibrium. One way to carry out the reasoning is to argue that suppliers

will demand a higher price for the quantity that has previously been exchanged, but fewer

purchases will be made at this higher price. The reduction in demand will, in turn, exert a

downward pressure on the price, and therefore the net increase in price will be somewhat less

than the amount of the tax.

There is a notable gap in this reasoning: will the process actually converge to a new

equilibrium? Perhaps the reduction in demand produced by the higher price will be so great that

9
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the price will then actually be carried lowerthan the previous equilibrium. And this price change

may, in turn, produce a new reduction in the quantity offered by sellers, and so on. The

observable fact is that we often carry out such qualitative reasoning without concerning ourselves

with the problem of possible non-convergence. To deal with that problem requires a mores

sophisticated form of qualitative reasoring which I will discuss a little later.

However, the general process I am describing, of propagating initial impacts through the

system of variables, is familiar enough. We have a set of variables connected by a system of

mechanisms. We consider a change in one of the mechanisms (i.e., in a parameter or an

exogenous variable), and propagate that change through the variables via the mechanisms that

connect them. For example, an increase in rainfall increases the wheat crop, which increases the

amount of wheat offered on the market, which reduces the equilibrium price at which wheat is

sold. Hence we confidently conclude that good growing weather will reduce the price of wheat.

This particular example is simpler than the previous one because it omits any subsequent

feedback from the market price to the quantity that will be supplied (the latter being supposed to

be determined by the weather). Propagation of the effect is straightforward, and does not raise

any question of convergence or stability. Notice that the reasoning also depends on a ceteris

paribus assumption, that only one parameter or exogenous variable has changed, the others

remaining constant.

Monotonic Transformations

Since the kind of reasoning we have been illustrating depends only on relations of greater

or less and not upon cardinal quantities, it remains valid even if we stretch or bend the scales on

which we measure our variables, so long as the distortions are monotonic. For price in our

economic example, we can substitute any other variable that is a positive monotonic function of

price; and for quantity an arbitrary positive monotonic function of quantity. Our reasoning will be

unchanged so long as the ordering of corresponding values of the variables is unchanged: the

greater value remains the greater, and the smaller the smaller.

There is no difficulty in constructing a formal mathematics of ordinal variables, or what

amounts to the same thing, of relations that are invariant under monotonic transformations. What

is more important is that human beings can make the inferences implied by this mathematics

quite readily, at least in simple cases. "Simple cases' means situations where an effect can be

propagated linearly through the system without interactions among different paths of propagation.

10
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Even if the signs of all the connections are known, the possibility of drawing unequivocal

inferences disappears quite rapidly in the presence of interactions. The reason is fairly obvious:

along one path of propagation the effect of a change in parameter upon a system variable may be

positive, along another path the effect on the same variable may be negative. The net effect, the

sum of the positive and negative effects, is not invariant under monotonic transformations of the

variables. To draw definite conclusions under these circumstances, more information about the

variables, information on their cardinal values, is required. Not surprisingly, people do not reason

very well in the presence of such interactions, which require them, in effect, to solve simultaneous

equations.

Qualitative Treatment of Differential Equations
The problem of convergence that was raised above can sometimes been dealt with if we

know something about the dynamics of the system we are dealing with. The equations of a

system in equilibrium can be 'dynamicized" by displacing the dependent variable of each to the

right-hand side, and replacing it by its time derivative. That is, starting with y = ax, we first write 0

= ax - y, and then dy/dt = ax - y. The equilibria of the system of differential equations constructed

in this way is simply the original set of equations.

Of course, we should not write down these dynamic relations arbitrarily. Each one is an

assertion about the mechanism that determines the rate of change of the corresponding

dependent variable (the one whose derivative appears). The system consisting of 0 = ax -by and

0 = cx-dy can be dynamicized in two ways depending on which equation we choose to represent

the mechanism regulating x and which to represent the mechanism regulating y. Which is the

correct representation is not a matter of fiat, but a substantive question about how the system

under consideration actually works.

Now if we can agree as to how to dynamicize a system of static equations, we gain by this

process new information about the system, and new abilities to draw conclusions about its

comparative statics. For we can solve the differential equations, obtaining their roots as functions

of the system parameters. But these functions determine whether the roots correspond to a

stable cr an unstable equilibrium. If we assume stability, then we obtain new conditions on the

parameters, which give us additional information about the net changes that will be produced.

Returning to our earlier example of the demand and supply relations, we now replace the

supply function by a differential equation determining the rate of change in the quantity supplied

11
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as a function of the difference between the supply price for that quantity and the market price.

The second differential equation determines the rate of change in the price as a function of the

difference between the quantities supplied and demanded, respectively, at the current market

price.

In the new dynamic system, the conditions for stability constrain the system parameters so

as to guarantee convergence of price and quantity adjustments, and will determine the signs of

the changes in equilibrium price and quantity produced by a change in a parameter or an

exogenous variable. If we dynamicize the system in other ways, of course the stability conditions

will be different.

It can be shown that the stability conditions are invariant under monotonic transformations

of the variables. Hence, stability depends on relations of greater and less among variables, and

not on the cardinal properties of the individual variables.

All of these modes of ordinal reasoning, in both the static and dynamic cases, can be given

a graphical or diagramatic interpretation, and the reasoning can be carded out either by reference

to an actual diagram on paper or one visualized in the 'minds eye.' Hence, when we see people

reasoning ordinally, we cannot be sure whether it is being accomplished in some symbolic way or

by visualization. We turn next to a brief discussion of the diagramatic representation.

Reasoning About Diagrams

In analytic geometry we all learned to convert equations into geometrical curves or

surfaces, and geometrical figures into the equations of their boundaries. Thus, the example given

earlier of the effect of a tax on equilibrium price and quantity of a commodity can be represented

by two curves, a supply function and a demand function, on a plane with price and quantity as the

axes. The equilibrium point is the intersection of the two curves, and the effect of the tax is

represented by a parallel displacement of the supply curve, producing a new intersection. The

conclusions we reached earlier by "propagation" can be reached simply by observing the

properties af the diagram, that is, the relative positions of the equilibria before and after

displacement.

To handle diagramatically the questions of convergence and stability requires a more

complex diagram. When we dynamicize the static system, the differential equations determine

possible paths of the system in the P-Q plane. Such a path is uniquely determined for each initial

point, and the paths cannot cross (since the system cannot proceed along two different paths
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from the same state). The collectivity of such paths is called the direction field for the system,

and from the~direction field, we can infer how the system will move from any starting point --

specificially whether it will move to an equilibrium.

Consider against, our commodity market (Figure 1). The static equations for the aemand

curve and supply curve correspond to the states in which the price and the quantity, respectively,

are in equilibrium, and therefore where dp/dt = 0 and dq/dt = 0, respectively. Hence, the paths

will be horizontal where they cross the former curve and vertical where they cross the latter. It

can be seen that if the supply curve is steeper than the demand curve (demand more elastic than

supply), the path will converge to the (stable) equilibrium point at the intersection of the supply

and demand curves. If the supply is more elastic, the paths will diverge from the (unstable)

equilibrium.

A little further consideration shows that these properties are invariant under stretching or

contraction of the two axes -- under monotonic transformation of the variables. Hence our

diagrammatic analysis exactly parallels the algebraic analysis in terms of ordinal variables.

Conclusion

Now we have come full circle back to the topic of visualization and the role of the mind's

eye and of external visual displays in human thinking. I have tried to survey some of the main

tools and processes that seem to be implicated in everyday reasoning -- the kind that carries us

through the day, dealing with problems as they arise.

The thinking I have described does not look at al! like formal logic, and only a little like

mathematics. It makes use of a great multitude of inference rules, which are not tautological

rules of logic but incorporate much real-world knowledge. It appears to be remarkably

unconcerned with questions of sufficiency and necessity. When it deals with quantities, as it

often must, it usually handles primarily their ordinal rather than their cardinal properties. For most

people, at least, it makes great use of diagramatic representations, or mental diagrams in the

mind's eye, which provide it with powerful inference processes. To compensate for its severe

limitations in handling simultaneous relations, it proceeds by successive approximations, and

halts when it has satisficed.

By the standards of formal logic, it is a jerry-built structure. But it gets us through the day.
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